3.2378 \(\int \frac{(1-2 x)^{3/2}}{(2+3 x)^4 (3+5 x)^{3/2}} \, dx\)

Optimal. Leaf size=144 \[ -\frac{608185 \sqrt{1-2 x}}{504 \sqrt{5 x+3}}+\frac{13409 \sqrt{1-2 x}}{168 (3 x+2) \sqrt{5 x+3}}+\frac{77 \sqrt{1-2 x}}{12 (3 x+2)^2 \sqrt{5 x+3}}+\frac{7 \sqrt{1-2 x}}{9 (3 x+2)^3 \sqrt{5 x+3}}+\frac{463881 \tan ^{-1}\left (\frac{\sqrt{1-2 x}}{\sqrt{7} \sqrt{5 x+3}}\right )}{56 \sqrt{7}} \]

[Out]

(-608185*Sqrt[1 - 2*x])/(504*Sqrt[3 + 5*x]) + (7*Sqrt[1 - 2*x])/(9*(2 + 3*x)^3*Sqrt[3 + 5*x]) + (77*Sqrt[1 - 2
*x])/(12*(2 + 3*x)^2*Sqrt[3 + 5*x]) + (13409*Sqrt[1 - 2*x])/(168*(2 + 3*x)*Sqrt[3 + 5*x]) + (463881*ArcTan[Sqr
t[1 - 2*x]/(Sqrt[7]*Sqrt[3 + 5*x])])/(56*Sqrt[7])

________________________________________________________________________________________

Rubi [A]  time = 0.0475551, antiderivative size = 144, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.231, Rules used = {98, 151, 152, 12, 93, 204} \[ -\frac{608185 \sqrt{1-2 x}}{504 \sqrt{5 x+3}}+\frac{13409 \sqrt{1-2 x}}{168 (3 x+2) \sqrt{5 x+3}}+\frac{77 \sqrt{1-2 x}}{12 (3 x+2)^2 \sqrt{5 x+3}}+\frac{7 \sqrt{1-2 x}}{9 (3 x+2)^3 \sqrt{5 x+3}}+\frac{463881 \tan ^{-1}\left (\frac{\sqrt{1-2 x}}{\sqrt{7} \sqrt{5 x+3}}\right )}{56 \sqrt{7}} \]

Antiderivative was successfully verified.

[In]

Int[(1 - 2*x)^(3/2)/((2 + 3*x)^4*(3 + 5*x)^(3/2)),x]

[Out]

(-608185*Sqrt[1 - 2*x])/(504*Sqrt[3 + 5*x]) + (7*Sqrt[1 - 2*x])/(9*(2 + 3*x)^3*Sqrt[3 + 5*x]) + (77*Sqrt[1 - 2
*x])/(12*(2 + 3*x)^2*Sqrt[3 + 5*x]) + (13409*Sqrt[1 - 2*x])/(168*(2 + 3*x)*Sqrt[3 + 5*x]) + (463881*ArcTan[Sqr
t[1 - 2*x]/(Sqrt[7]*Sqrt[3 + 5*x])])/(56*Sqrt[7])

Rule 98

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((b*c -
 a*d)*(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^(p + 1))/(b*(b*e - a*f)*(m + 1)), x] + Dist[1/(b*(b*e - a*
f)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 2)*(e + f*x)^p*Simp[a*d*(d*e*(n - 1) + c*f*(p + 1)) + b*c*(d
*e*(m - n + 2) - c*f*(m + p + 2)) + d*(a*d*f*(n + p) + b*(d*e*(m + 1) - c*f*(m + n + p + 1)))*x, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p
] || IntegersQ[p, m + n])

Rule 151

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[((b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*
f)), x] + Dist[1/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[(a*d*f*
g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a*h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p
+ 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && LtQ[m, -1] && IntegerQ[m]

Rule 152

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[((b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*
f)), x] + Dist[1/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[(a*d*f*
g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a*h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p
+ 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && LtQ[m, -1] && IntegersQ[2*m, 2*n, 2*p]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{(1-2 x)^{3/2}}{(2+3 x)^4 (3+5 x)^{3/2}} \, dx &=\frac{7 \sqrt{1-2 x}}{9 (2+3 x)^3 \sqrt{3+5 x}}+\frac{1}{9} \int \frac{\frac{275}{2}-198 x}{\sqrt{1-2 x} (2+3 x)^3 (3+5 x)^{3/2}} \, dx\\ &=\frac{7 \sqrt{1-2 x}}{9 (2+3 x)^3 \sqrt{3+5 x}}+\frac{77 \sqrt{1-2 x}}{12 (2+3 x)^2 \sqrt{3+5 x}}+\frac{1}{126} \int \frac{\frac{50743}{4}-16170 x}{\sqrt{1-2 x} (2+3 x)^2 (3+5 x)^{3/2}} \, dx\\ &=\frac{7 \sqrt{1-2 x}}{9 (2+3 x)^3 \sqrt{3+5 x}}+\frac{77 \sqrt{1-2 x}}{12 (2+3 x)^2 \sqrt{3+5 x}}+\frac{13409 \sqrt{1-2 x}}{168 (2+3 x) \sqrt{3+5 x}}+\frac{1}{882} \int \frac{\frac{5986981}{8}-\frac{1407945 x}{2}}{\sqrt{1-2 x} (2+3 x) (3+5 x)^{3/2}} \, dx\\ &=-\frac{608185 \sqrt{1-2 x}}{504 \sqrt{3+5 x}}+\frac{7 \sqrt{1-2 x}}{9 (2+3 x)^3 \sqrt{3+5 x}}+\frac{77 \sqrt{1-2 x}}{12 (2+3 x)^2 \sqrt{3+5 x}}+\frac{13409 \sqrt{1-2 x}}{168 (2+3 x) \sqrt{3+5 x}}-\frac{\int \frac{321469533}{16 \sqrt{1-2 x} (2+3 x) \sqrt{3+5 x}} \, dx}{4851}\\ &=-\frac{608185 \sqrt{1-2 x}}{504 \sqrt{3+5 x}}+\frac{7 \sqrt{1-2 x}}{9 (2+3 x)^3 \sqrt{3+5 x}}+\frac{77 \sqrt{1-2 x}}{12 (2+3 x)^2 \sqrt{3+5 x}}+\frac{13409 \sqrt{1-2 x}}{168 (2+3 x) \sqrt{3+5 x}}-\frac{463881}{112} \int \frac{1}{\sqrt{1-2 x} (2+3 x) \sqrt{3+5 x}} \, dx\\ &=-\frac{608185 \sqrt{1-2 x}}{504 \sqrt{3+5 x}}+\frac{7 \sqrt{1-2 x}}{9 (2+3 x)^3 \sqrt{3+5 x}}+\frac{77 \sqrt{1-2 x}}{12 (2+3 x)^2 \sqrt{3+5 x}}+\frac{13409 \sqrt{1-2 x}}{168 (2+3 x) \sqrt{3+5 x}}-\frac{463881}{56} \operatorname{Subst}\left (\int \frac{1}{-7-x^2} \, dx,x,\frac{\sqrt{1-2 x}}{\sqrt{3+5 x}}\right )\\ &=-\frac{608185 \sqrt{1-2 x}}{504 \sqrt{3+5 x}}+\frac{7 \sqrt{1-2 x}}{9 (2+3 x)^3 \sqrt{3+5 x}}+\frac{77 \sqrt{1-2 x}}{12 (2+3 x)^2 \sqrt{3+5 x}}+\frac{13409 \sqrt{1-2 x}}{168 (2+3 x) \sqrt{3+5 x}}+\frac{463881 \tan ^{-1}\left (\frac{\sqrt{1-2 x}}{\sqrt{7} \sqrt{3+5 x}}\right )}{56 \sqrt{7}}\\ \end{align*}

Mathematica [A]  time = 0.0607951, size = 79, normalized size = 0.55 \[ \frac{1}{392} \left (463881 \sqrt{7} \tan ^{-1}\left (\frac{\sqrt{1-2 x}}{\sqrt{7} \sqrt{5 x+3}}\right )-\frac{7 \sqrt{1-2 x} \left (1824555 x^3+3608883 x^2+2378026 x+521968\right )}{(3 x+2)^3 \sqrt{5 x+3}}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[(1 - 2*x)^(3/2)/((2 + 3*x)^4*(3 + 5*x)^(3/2)),x]

[Out]

((-7*Sqrt[1 - 2*x]*(521968 + 2378026*x + 3608883*x^2 + 1824555*x^3))/((2 + 3*x)^3*Sqrt[3 + 5*x]) + 463881*Sqrt
[7]*ArcTan[Sqrt[1 - 2*x]/(Sqrt[7]*Sqrt[3 + 5*x])])/392

________________________________________________________________________________________

Maple [B]  time = 0.013, size = 250, normalized size = 1.7 \begin{align*} -{\frac{1}{784\, \left ( 2+3\,x \right ) ^{3}} \left ( 62623935\,\sqrt{7}\arctan \left ( 1/14\,{\frac{ \left ( 37\,x+20 \right ) \sqrt{7}}{\sqrt{-10\,{x}^{2}-x+3}}} \right ){x}^{4}+162822231\,\sqrt{7}\arctan \left ( 1/14\,{\frac{ \left ( 37\,x+20 \right ) \sqrt{7}}{\sqrt{-10\,{x}^{2}-x+3}}} \right ){x}^{3}+158647302\,\sqrt{7}\arctan \left ( 1/14\,{\frac{ \left ( 37\,x+20 \right ) \sqrt{7}}{\sqrt{-10\,{x}^{2}-x+3}}} \right ){x}^{2}+25543770\,{x}^{3}\sqrt{-10\,{x}^{2}-x+3}+68654388\,\sqrt{7}\arctan \left ( 1/14\,{\frac{ \left ( 37\,x+20 \right ) \sqrt{7}}{\sqrt{-10\,{x}^{2}-x+3}}} \right ) x+50524362\,{x}^{2}\sqrt{-10\,{x}^{2}-x+3}+11133144\,\sqrt{7}\arctan \left ( 1/14\,{\frac{ \left ( 37\,x+20 \right ) \sqrt{7}}{\sqrt{-10\,{x}^{2}-x+3}}} \right ) +33292364\,x\sqrt{-10\,{x}^{2}-x+3}+7307552\,\sqrt{-10\,{x}^{2}-x+3} \right ) \sqrt{1-2\,x}{\frac{1}{\sqrt{-10\,{x}^{2}-x+3}}}{\frac{1}{\sqrt{3+5\,x}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1-2*x)^(3/2)/(2+3*x)^4/(3+5*x)^(3/2),x)

[Out]

-1/784*(62623935*7^(1/2)*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/2))*x^4+162822231*7^(1/2)*arctan(1/14*
(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/2))*x^3+158647302*7^(1/2)*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/2)
)*x^2+25543770*x^3*(-10*x^2-x+3)^(1/2)+68654388*7^(1/2)*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/2))*x+5
0524362*x^2*(-10*x^2-x+3)^(1/2)+11133144*7^(1/2)*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/2))+33292364*x
*(-10*x^2-x+3)^(1/2)+7307552*(-10*x^2-x+3)^(1/2))*(1-2*x)^(1/2)/(2+3*x)^3/(-10*x^2-x+3)^(1/2)/(3+5*x)^(1/2)

________________________________________________________________________________________

Maxima [A]  time = 3.15281, size = 285, normalized size = 1.98 \begin{align*} -\frac{463881}{784} \, \sqrt{7} \arcsin \left (\frac{37 \, x}{11 \,{\left | 3 \, x + 2 \right |}} + \frac{20}{11 \,{\left | 3 \, x + 2 \right |}}\right ) + \frac{608185 \, x}{252 \, \sqrt{-10 \, x^{2} - x + 3}} - \frac{635003}{504 \, \sqrt{-10 \, x^{2} - x + 3}} + \frac{49}{27 \,{\left (27 \, \sqrt{-10 \, x^{2} - x + 3} x^{3} + 54 \, \sqrt{-10 \, x^{2} - x + 3} x^{2} + 36 \, \sqrt{-10 \, x^{2} - x + 3} x + 8 \, \sqrt{-10 \, x^{2} - x + 3}\right )}} + \frac{1561}{108 \,{\left (9 \, \sqrt{-10 \, x^{2} - x + 3} x^{2} + 12 \, \sqrt{-10 \, x^{2} - x + 3} x + 4 \, \sqrt{-10 \, x^{2} - x + 3}\right )}} + \frac{4367}{24 \,{\left (3 \, \sqrt{-10 \, x^{2} - x + 3} x + 2 \, \sqrt{-10 \, x^{2} - x + 3}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(3/2)/(2+3*x)^4/(3+5*x)^(3/2),x, algorithm="maxima")

[Out]

-463881/784*sqrt(7)*arcsin(37/11*x/abs(3*x + 2) + 20/11/abs(3*x + 2)) + 608185/252*x/sqrt(-10*x^2 - x + 3) - 6
35003/504/sqrt(-10*x^2 - x + 3) + 49/27/(27*sqrt(-10*x^2 - x + 3)*x^3 + 54*sqrt(-10*x^2 - x + 3)*x^2 + 36*sqrt
(-10*x^2 - x + 3)*x + 8*sqrt(-10*x^2 - x + 3)) + 1561/108/(9*sqrt(-10*x^2 - x + 3)*x^2 + 12*sqrt(-10*x^2 - x +
 3)*x + 4*sqrt(-10*x^2 - x + 3)) + 4367/24/(3*sqrt(-10*x^2 - x + 3)*x + 2*sqrt(-10*x^2 - x + 3))

________________________________________________________________________________________

Fricas [A]  time = 1.53336, size = 367, normalized size = 2.55 \begin{align*} \frac{463881 \, \sqrt{7}{\left (135 \, x^{4} + 351 \, x^{3} + 342 \, x^{2} + 148 \, x + 24\right )} \arctan \left (\frac{\sqrt{7}{\left (37 \, x + 20\right )} \sqrt{5 \, x + 3} \sqrt{-2 \, x + 1}}{14 \,{\left (10 \, x^{2} + x - 3\right )}}\right ) - 14 \,{\left (1824555 \, x^{3} + 3608883 \, x^{2} + 2378026 \, x + 521968\right )} \sqrt{5 \, x + 3} \sqrt{-2 \, x + 1}}{784 \,{\left (135 \, x^{4} + 351 \, x^{3} + 342 \, x^{2} + 148 \, x + 24\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(3/2)/(2+3*x)^4/(3+5*x)^(3/2),x, algorithm="fricas")

[Out]

1/784*(463881*sqrt(7)*(135*x^4 + 351*x^3 + 342*x^2 + 148*x + 24)*arctan(1/14*sqrt(7)*(37*x + 20)*sqrt(5*x + 3)
*sqrt(-2*x + 1)/(10*x^2 + x - 3)) - 14*(1824555*x^3 + 3608883*x^2 + 2378026*x + 521968)*sqrt(5*x + 3)*sqrt(-2*
x + 1))/(135*x^4 + 351*x^3 + 342*x^2 + 148*x + 24)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)**(3/2)/(2+3*x)**4/(3+5*x)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 2.53812, size = 509, normalized size = 3.53 \begin{align*} -\frac{463881}{7840} \, \sqrt{70} \sqrt{10}{\left (\pi + 2 \, \arctan \left (-\frac{\sqrt{70} \sqrt{5 \, x + 3}{\left (\frac{{\left (\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}\right )}^{2}}{5 \, x + 3} - 4\right )}}{140 \,{\left (\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}\right )}}\right )\right )} - \frac{55}{2} \, \sqrt{10}{\left (\frac{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}{\sqrt{5 \, x + 3}} - \frac{4 \, \sqrt{5 \, x + 3}}{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}\right )} - \frac{11 \,{\left (33989 \, \sqrt{10}{\left (\frac{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}{\sqrt{5 \, x + 3}} - \frac{4 \, \sqrt{5 \, x + 3}}{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}\right )}^{5} + 15023680 \, \sqrt{10}{\left (\frac{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}{\sqrt{5 \, x + 3}} - \frac{4 \, \sqrt{5 \, x + 3}}{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}\right )}^{3} + 1769566400 \, \sqrt{10}{\left (\frac{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}{\sqrt{5 \, x + 3}} - \frac{4 \, \sqrt{5 \, x + 3}}{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}\right )}\right )}}{28 \,{\left ({\left (\frac{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}{\sqrt{5 \, x + 3}} - \frac{4 \, \sqrt{5 \, x + 3}}{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}\right )}^{2} + 280\right )}^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(3/2)/(2+3*x)^4/(3+5*x)^(3/2),x, algorithm="giac")

[Out]

-463881/7840*sqrt(70)*sqrt(10)*(pi + 2*arctan(-1/140*sqrt(70)*sqrt(5*x + 3)*((sqrt(2)*sqrt(-10*x + 5) - sqrt(2
2))^2/(5*x + 3) - 4)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))) - 55/2*sqrt(10)*((sqrt(2)*sqrt(-10*x + 5) - sqrt(2
2))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22))) - 11/28*(33989*sqrt(10)*((sqrt(2)*sq
rt(-10*x + 5) - sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))^5 + 15023680*s
qrt(10)*((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(
22)))^3 + 1769566400*sqrt(10)*((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*s
qrt(-10*x + 5) - sqrt(22))))/(((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*s
qrt(-10*x + 5) - sqrt(22)))^2 + 280)^3